A NEW SUM–PRODUCT ESTIMATE IN PRIME FIELDS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sum-product Estimate for Large Subsets of Prime Fields

Let Fp be the field of prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ Fp with |A| = N such that max{|A+ A|, |AA|} p|A|. One of the results of the present paper implies that if A ⊂ Fp with |A| > p2/3, then max{|A+ A|, |AA|} p|A|.

متن کامل

un 2 00 7 the sum - product estimate for large subsets of prime fields

Let F p be the field of a prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ F p with |A| = N such that max{|A + A|, |AA|} ≪ p 1/2 |A| 1/2. In the present paper we prove that if A ⊂ F p with |A| > p 2/3 , then max{|A + A|, |AA|} ≫ p 1/2 |A| 1/2 .

متن کامل

Special prime numbers and discrete logs in finite prime fields

A set A of primes p involving numbers such as abt + c, where |a|, |b|, |c| = O(1) and t → ∞, is defined. An algorithm for computing discrete logs in the finite field of order p with p ∈ A is suggested. Its heuristic expected running time is Lp[ 1 3 ; ( 32 9 )1/3] for ( 32 9 )1/3 = 1.526 · · · , where Lp[α;β] = exp((β + o(1)) ln α p(ln ln p)1−α) as p → ∞, 0 < α < 1, and 0 < β. At present, the mo...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

Statistics of Prime Divisors in Function Fields

ROBERT C. RHOADES Abstra t. We show that the prime divisors of a random polynomial in Fq[t] are typi ally Poisson Distributed . This result is analogous to the result in Z of Granville [1℄. Along the way, we use a sieve developed by Granville and Soundararajan [2℄ to give a simple proof of the Erdös-Ka theorem in the fun tion eld setting. This approa h gives stronger results about the moments o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2019

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972719000303